
ht. J. Heal Man i-wafer Vol. 35. No. 1, pp. Ill-120, 1992 
Printed in Great Britam 

OOl7-9310/92$5.00+0.00 
Cj 1991 Pergamon Press plc 

Thermal convection loop with heating from above 
Y.-Z. WANG and HAIM H. BAUt 

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 
Philadelphia, PA 19104-6315, U.S.A. 

(Received 14 December 1990 and in jinalform 11 February 1991) 

Abstract-The dynamics of single phase, buoyancy-induced flow in a toroidal loop are investigated 
theoretically under conditions of time-dependent, periodically varying, wall temperature. The heating and 
cooling, which are applied to the loop walls, are symmetrical with respect to the loop’s axis which is parallel 
to the gravity vector. On average, the upper half’s temperature is maintained at a higher value than that 
of the lower half. That is, on average, the temperature field inside the loop is stably stratified and the 
Rayleigh number based on the average temperature difference assumes a negative value. Despite this fact, 
as the Rayleigh number decreases, the flow in the loop exhibits a rich range of flow structures with a net 
amount of heat transport from the hot to the cold boundary. As the Rayleigh number decreases, the flow 
structures change from no-motion to time periodic motion to chaotic flow occasionally interrupted by 

periodic windows. 

1. INTRODUCTION 

THERMAL convection loops provide a means for cir- 
culating fluid without the use of pumps. Such loops 
are of interest for solar heaters, emergency reactor- 
core cooling, and process industries. They are also 
of interest for the understanding of warm springs, 
seawater circulation in the oceanic crust, and the for- 
mation of ore deposits. Most of the work to date has 
focused on dynamics of the flow in loops subject to 
time-independent boundary conditions. Due to the 
vast amount of literature on thermal convection 
loops, we cite below only a sample of the most relevant 
articles. For additional references, the reader is 
referred to review articles by Metro1 and Greif [l] and 
Bau and Wang [2] and the literature cited therein. 

Toroidal thermal convection loops with symmetri- 

cal wall temperature distributions and time-inde- 
pendent boundary conditions have attracted con- 
siderable attention in the scientific literature. Malkus 
[3] showed that for time-independent wall tempera- 
tures, the partial differential equations describing the 
cross-sectionally averaged flow in the loop can be 
reduced, with exact closure, to three ordinary differ- 
ential equations similar to the Lorenz equations. The 
Lorenz equations were originally derived in a cele- 
brated paper by Lorenz [4] as a crude approximation 
for BCnard convection. Since then, these equations 
have been investigated intensively (i.e. Sparrow’s book 
[5]). Malkus’ treatment has been expanded by Hart 
[6,7] to include more general friction and heat transfer 
coefficients. The theoretical model predicts various 
flow structures which for moderate and large loop 
Prandtl numbers include, in order of increasing 
Rayleigh number : no-motion, steady motion, chaos 
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(which is occasionally interrupted by periodic win- 
dows) and periodic flow [8]. For small Prandtl 
numbers, there are no time-dependent flows. These 

theoretical predictions have been partially confirmed 
by experimental observations. Khlebutin and Shai- 

durov [9] obtained heat transfer correlations for steady 
convection but did not observe any time-dependent 
flows. Creveling et al. [lo] studied the stability of the 
steady motion theoretically and experimentally. They 
observed that as the Rayleigh number increases, the 
steady convection is replaced with time-dependent, 
aperiodic flow with occasional reversals in the flow 
direction. Similar results have been reported by 
Ehrhard and Muller [l 11. Gorman et al. [12] have 
focused on the chaotic nature of the time-dependent 
flow. During the last few years, we have been operat- 
ing, at the University of Pennsylvania [ 131, a thermal 
convection loop similar to the one constructed by 
Creveling et al. [lo] as an experimental demonstration 
of chaotic dynamics. 

Most of the work to date has focused on convective 
processes with time-independent wall conditions. Far 
fewer studies address the stability of time-dependent 
convection. However, in many processes in industry 
and nature, the boundary conditions are not fixed in 
time. As we shall demonstrate, time-wise variations 
of boundary conditions may give rise to new and 
sometimes unexpected physical phenomena. The 
effect of time-dependent boundary conditions is also 
of interest when exploring the feasibility and means of 
controlling the flow in the loop (i.e. promoting or 
retarding chaos) through boundary perturbations. 
For example, in a related study [ 141, we used an active 
(feedback) controller to suppress (laminarize) chaotic 
motion which naturally occurs in our loop at suffi- 
ciently high Rayleigh numbers. For these reasons, we 
study the effect of time-dependent wall temperatures 
on the dynamics of thermal convection. In an earlier 
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paper [ 151, we described the flow dynamics in a loop 
heated from below with time periodic wall tempera- 
ture. Briefly, we observed in sequence of increasing 
Rayleigh number, a no-motion state, periodic motion, 

chaotic motion and periodic motion. Depending on 
the magnitude of the loop’s Prandtl number and the 
modulation’s amplitude, transition to chaos occurred 
either through a period doubling sequence or through 
a homoclinic explosion. In the case of periodic heating 
from above, since, on the average, the thermal held 
is stably stratified, one would expect that the flow 

behavior would be relatively simple. Our present 
investigation indicates that this is not necessarily the 
case. Indeed, one may observe a range of complicated 
flow structures which include periodic and chaotic 
motions. 

I g 

2. MATHEMATICAL MODEL 

Consider a fluid filled pipe of inner radius d bent to 
form a torus of radius D >> d. The wall temperature 

of the pipe T,,(e, t) may vary with the angular location 
0 and time t (Fig. 1). The cross-sectionally averaged 
temperature variations T(0, t) in the loop may induce 
fluid motion of cross-sectionally-averaged velocity 
u(t). The fluid is assumed to be incompressible and 
Newtonian. Within the framework of Boussinesq’s 
approximation, the dimensionless mass, momentum 
and energy conservation equations are [ 161 

IA = u(t) (1) 

T(Q, t)cos(6)d&Pu(t) (2) 

and 

a no, 0 f(O, t) = -u(t) aB 

a’T(0, t) 
+B a02 

___ + [Tw(fL t) - T(& 41. (3) 

In the above, R = gfiATz*/(2DP) is the loop’s 
Rayleigh number; fl the fluid’s thermal expansion 
coefficient; g the gravitational acceleration; and AT 

the time-averaged, wall temperature difference 
between the loop’s bottom and top. In this paper 
AT < 0, thus R < 0. The time scale is r = pC,d/2h, 

where p is the average fluid density, C,, the heat 
capacity, and h (which we assume to be constant) the 
heat transfer coefficient between the fluid and the pipe 
wall. P = 4vz/d* = 8Pr/Nu is the loop’s Prandtl 
number; v the kinematic viscosity ; and Pr = v/a and 
IVU = 2hd/k the conventional Prandtl and Nusselt 
numbers, respectively. tl and k are the fluid’s thermal 
diffusivity and conductivity ; and B = l/Nu(d/D)* the 
Biot number. The length scale is the loop’s radius D. 

In addition to the aforementioned Boussinesq 
approximation, the aforedescribed mathematical 
model assumes implicitly that the friction and heat 
transfer laws are similar to those of laminar, fully 

FIG. 1. Schematic description of the thermal convection loop. 

developed, Poiseuille pipe flow. One would expect and 
we did, in fact, observe in experiments the develop- 

ment of secondary circulation which may significantly 
modify both the friction and heat. transfer laws. More 
realistic friction and heat transfer laws are not known 
a priori. To obtain these correlations, one may need to 
solve a spatially three-dimensional model or conduct 
experiments. We justify the use of the simpler cot- 
relations on the grounds that this simple model still 
provides a qualitatively correct picture as has been 
confirmed by our own experiments [14] and those by 
others [l 1, 121 for loops with time-independent wall 
temperature. 

Equations (l)-(3) constitute a set of non-linear 
differentio-integral equations for which, in general, an 
exact solution is not available. We expand the wall 
and fluid temperatures in Fourier series in terms of 
the angle 0 

T,(B, t) = W,(t)+ ,f W’,(t) sin (no) (4) 
“= I 

and 

T(0, t) = f S,,(t) sin (no) + C,(t) cos (ne). (5) 
n=O 

Upon substituting the series (4) and (5) into the 
governing equations (l)-(3) and requiring that these 
equations are satisfied in the sense of weighted 
residuals, we obtain an infinite set of ordinary differ- 
ential equations. It turns out that three equations in 
the set decouple from the rest of the set and can be 
solved independently of the other equations without 
need for truncation. Thus, the full dynamics of the 
problem (l)-(3) are contained in the three equations 

zi = P(c-u) (6) 

lz = -us-c (7) 
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S = UC-s-R[l+ssin(ot)]. (8) 

Once these three equations are integrated, the remain- 

ing set of (slaved) equations can be solved as well. In 
the special case of E = 0, equations (6)-(S) reduce to 
the celebrated Lorenz [4] equations. In the above, we 
removed the dependence on the Biot number, B, via 
the simple, algebraic transformation {u, C, S, R, 
P, t} -+ l/(l+B){u, RC,, RS,, R/(l+B), P, t} and 
prescribed the wall temperature to vary periodically 
with time, i.e. IV’, = 1 +E sin (cut). 

Equations (6)-(S) are nonlinear and admit a num- 
ber of possible solutions. Depending on the magni- 
tude of the system’s parameters, these are no-motion, 
periodic and chaotic motions. 

3 THE NO-MOTION SOLUTION AND ITS 

STABILITY 

Equations (6)-(S) admit a no-motion, long term, 
T( = 271/o) periodic solution of the form 

{u,c,s} = (O,O,-R[l+~/~~sin(ot+~)]} (9) 

where e0 = ,,/(l +w’) and 4 = arcsin (-W/Q,). The 
terminology ‘no-motion’ implies here the absence of 
net circulation in the loop. The thermal interaction 

between the fluid and the pipe’s walls causes the fluid’s 
temperature to oscillate at the same period as the wall 
temperature, albeit with a phase lag (4). When E +O 
and/or w -+ cc, the fluid’s temperature is fixed in time 
and the solution is identical to that of the un- 
modulated loop (the classical Lorenz equations). 

In the subsequent derivation, it is convenient to 
introduce a set of new variables (X, Y, Z} such that 

{u,c,s} ={A’, Y,Z-R[l+~/e~sin(ot+~)]}. (10) 

In terms of these new variables, the no-motion solu- 
tion corresponds to the origin of the phase space {A’, 

Y, Z} and equations (6)-(S) assume the form 

8= P(Y-X) (11) 

l+isin(or+4) -Y-XZ (12) 1 
2 = -z+xy. (13) 

Next, we investigate the linear stability of the no- 
motion state. To this end, we drop the non-linear 
terms in equations (11) and (12) to obtain a set of 
linear differential equations with periodic coefficients. 

It is immediately apparent that 

lim Z(t) = 0. 
f-a, 

The remaining two equations constitute the damped 
Mathieu system 

2= P(Y-X) (14) 

I’= RX 
[ 

l+tsin(wrf4) 1 -Y. (1% 
Floquet theory suggests that the solutions of this 
linearized system can be presented in the form {X, 
Y} = {x, y} exp (at), where {x, v} are T periodic 
functions and 0 is the Floquet exponent. The spectral 
problem of stability involves the determination of the 
critical R values which correspond to Re (0) = 0. In 
Fig. 2, we depict this critical value as a function of the 
disturbance amplitude E for the loop’s Prandtl number 
P = 4 and forcing frequency w = 1. That is, the period 
of the forcing is comparable in magnitude to the 
thermal equalization time between the temperatures 
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FIG. 2. Stability diagram for the no-motion state for p = o = 1. The Rayleigh number at the onset of 
convection as predicted by linear stability analysis is depicted as a function of the modulation amplitude 
(E). The symbols T and 2T indicate, respectively, bifurcation into harmonic (T periodic) and subharmonic 
(2T periodic) motion solutions. The region (G) indicates global stability. The vertical line at E = 5 

corresponds to the bifurcation diagram shown in Fig. 3. 
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of the fluid and the wall. The upper half and lower 
half of Fig. 2 correspond, respectively, to positive 
(heating from below) and negative (heating from 
above) Rayleigh numbers. The symbols T and 2T in 
Fig. 2 indicate bifurcation into T (harmonic) and 2T 

(subharmonic) flows. That is, depending on the mag- 
nitude of E, the no-motion solution may bifurcate to 
either T (same frequency as the forcing) or 2T (half 
forcing frequency) periodic flow. For each value of 
the Rayleigh number, there are two solutions which 
correspond, respectively, to motion predominantly in 
the clockwise or the counterclockwise directions. 

In this paper, we focus on negative R. From Fig. 2, 
we observe that for small negative R, the no-motion 
solution is linearly stable. The region of stability 

decreases as E increases. In the next section, we shall 
follow the chain of events as R decreases for a fixed E 
(= 5, say). This corresponds to the vertical dashed 

line depicted in Fig. 2. Following this line, we observe 
that the no-motion solution loses stability at point 
A, (the symbols Ai are cross-referenced with Fig. 3) 
in favor of a T periodic motion (whose stability 
characteristics are determined in the next section). As 
we further decrease R, the no-motion solution regains 
stability in the intervals AC-A, and A, j-A, + That is, 
if we were to conduct an experiment in which we 
gradually decreased R, we would observe initially a 
no-motion state, then motion states (which we 
describe later in detail) and the occasional reappear- 
ance of no-motion states corresponding to the areas 
between the ‘fingers’ in Fig. 2. 

The linear stability analysis (Fig. 2) indicated at 
which values of R the no-motion solution loses its 
stability because of small disturbances. This analysis, 
however, does not provide information on the size of 
the basin of attraction of the no-motion solution. To 
this end, we resort to global analysis. 

To obtain estimates of the global stability of the 
no-motion solution, we use the method of Lyapunov. 
As we focus in this paper on heating from above, 
we shall construct the global stability limits only for 
R < 0. A similar technique can be used for R > 0 [ 171. 
Briefly, we construct the positive definite Lyapunov 
functionals 

E, =; -;X’+Y’+Z’ for 0<?<2 
a0 

E, =; $X2+ Y2tZ2 for 2<t<cc (16) 

whose time derivatives 

8, = -{-RX2+Y2+Z2) 

+RXYisin(wtfq) for 0 GE”, < 2 

8, = -{X2+ Y2+z*} 

+XY l+R 
{ [ 

l+~sin(wr+~) II for 2 <A < co 
a0 

(17) 

must be negative to assure global stability (regardless 
of disturbance size). This is satisfied by 

for OGLE<2 
ao 

and 

O>Rd- for 2cLGc.c 
&o-E a0 

(18) 

which yields for E -+ 0, the low bound of R > - co. 
The region in which global stability is guaranteed is 
denoted G in Fig. 2. In contrast to the linear stability 
limits, the global stability limits (18) do not depend 
on the frequency w. Since the aforeselected Lyapunov 
functional (16) may not be optimal, the shown global 

stability limits may be conservative. We do know, 
however, that, in this case, the linear and global stabil- 
ity limits do not coincide as we find multiple solutions 

in regions predicted to be stable by linear theory. That 
is, in regions between the linear and global stability 
limits, the no-motion solution may have only a finite 
domain of attraction about whose size we shall com- 
ment in the next section. 

4. MOTION SOLUTIONS 

Next, we follow the chain of events as the Rayleigh 
number R decreases for a fixed E (= 5.0, say). That is, 
we follow the dashed, vertical line in Fig. 2. In Fig. 3, 
we show the fluid’s velocity (X) as a function of R for 
E = 5, w = P = 1. In order to obtain the bifurcation 
diagram depicted in Fig. 3, we used numerical tools. 
We integrated the loop equations (1 1))( 13) using 
a fourth-order accurate Rung+Kutta scheme and 
employed standard procedures [5] to locate periodic 
orbits and study their stability. Figure 3 was con- 
structed by probing the velocity (X) stroboscopically 
with period T. Thus, in Fig. 3, a single point at a given 
R indicates a T periodic motion ; two points indicate 
a subharmonic with period 2T; N points indicate a 
subharmonic with period NT; and a smear of points 
indicates chaotic behavior. Stable and non-stable 
solutions in Fig. 3 are denoted, respectively, with solid 
and dashed lines. 

The loop equations (1 l)-( 13) are invariant under 
the transformation (X, Y, Z, t} ++ { -X, - Y, Z, t} 
Consequently, we expect to find two types of solu- 
tions: one type, entitled ‘symmetric’, which satisfies 
the aforementioned invariance (i.e. the trajectory 
associated with the symmetric solution will pass 
through both points {X,, Y,, Z,} and { -X,, - Y,, 
Z,} in phase space); and a second type of solution, 
entitled asymmetric, which does not obey the afore- 
mentioned invariance. Asymmetric solutions always 
appear in pairs. Each asymmetric solution has a 
mirror image which we do not show in Fig. 3. 

The point denoted A, in Figs. 2 and 3 corresponds 
to the loss of stability of the no-motion solution. As 
the bifurcation is subcritical, the resulting T periodic, 
asymmetric motion solution (A ,-A,) is non-stable for 
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FIG. 3. A bifurcation diagram depicting the various flow regimes as a function of Rayleigh number. The 
diagram was generated by probing the velocity (X) stroboscopically with period T. N points at a given R 

indicates an NT periodic motion. A smear of points indicates chaotic behavior. 

small (R-R,,) [18]. This non-stable solution gains T periodic, motion solution. The non-stable solution 
stability at the turning point A, in Fig. 3 resulting in (A,-A,) provides a boundary between the basins of 
a stable T periodic motion (Fig. 4) in the interval attraction of the stable no-motion and motion solu- 
AZ-A-,. In the region A,-A,, there are three possible tions. Note also the hysteresis phenomenon en- 
solutions : the stable, no-motion solution (X = 0) ; the countered at points A, and A,. That is, if one had 
stable T periodic, motion solution and the non-stable, conducted an experiment in which R is gradually 
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FIG. 4. The T periodic, stable motion solution in the interval AZ-A, in Fig. 3. The velocity X as a function 
of time (t), the motion trajectory projected on the XY plane, and the spectrum of X in the frequency 

domain are shown, respectively in (a)-(c). 
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decreased, one would observe a discontinuous jump 
in Xat point A, from a no-motion state to a Tperiodic 
motion. If a similar experiment were conducted with 
increasing R, the discontinuous jump would occur at 
point A, from Aperiodic motion to no-motion. 

The stable T periodic, motion solution existing in 
the interval A,-A, is depicted in Fig. 4. Figures 4(at_ 

(c) show, respectively, the velocity X as a function of 

the time t, the XY projection of the motion-trajectory 
in phase space, and the spectrum of the signal X(t). 
As the motion is periodic, the trajectory describes a 
closed curve in phase space. The spectrum reveals 
dominating frequencies which are all integer multiples 
of the forcing frequency (w = 1) consistent with a 
periodic motion. Even though the loop is, on average, 

stably stratified, the oscillations result in flow with a 
non-zero mean, as is apparent from the time series 
in Fig. 4. Thus, we can expect net convective heat 
transport from the hot, upper half to the cold, lower 
half. This is shown in Fig. 5, which depicts the time 

average convective transport 

XY= lim! 
s 

7 

x(t) Y(t) dt 
r-=t 0 

as a function of the Rayleigh number. For clarity, 
only one solution branch is shown in Fig. 5. 

At point A, in Fig. 3, the T periodic solution loses 
stability and undergoes a supercritical period doub- 
ling bifurcation into a stable 2T periodic solution 
whose trajectory projected on the XY plane is depicted 
in Fig. 6(a). Note that the trajectory has a similar 
structure to the one shown in Fig. 4 with the curve 
being doubled. The period doubling sequence con- 
tinues in quick succession (the resolution of Fig. 3 
allows us to see only up to the 8T periodic solution) 
until it terminates with the appearance of an asym- 
metric, chaotic window at A,. The XY projection of 
the trajectories corresponding to the chaotic motion 

is shown in Fig. 6(b). Although the trajectories in Fig. 
6(b) do not repeat themselves, the phase space portrait 
appears to have a distinct structure. That is, the orbits 
tend to spend most of the time within well defined 
tubes in phase space. This type of chaotic behavior 
was entitled by Lorenz [19] noisy (semi) periodicity. 

We shall describe noisy periodicity in more detail 
when we discuss another chaotic attractor later on in 

the paper. 
The chaotic window disappears through a reversed 

period doubling sequence which terminates with a T 

periodic solution at A,. As the Rayleigh number is 
further decreased, the amplitude of the T periodic 

solution decreases to zero at A,. At this point, the no- 
motion solution regains stability and remains stable 
within the interval A,-A,. The interval A,-A, cor- 

responds to the gap between the T and 2T periodic 
solutions in Fig. 2. This no-motion solution undergoes 

a subcritical bifurcation at point A, into a non-stable, 
symmetric 2T periodic solution (consistent with the 
predictions of the linear stability analysis, Fig. 2). The 

2T periodic solution regains stability at the turning 
point A,. The situation at point A, is similar to that 
at A, in the sense that we encounter the co-existence 

of multiple solutions and a hysteresis phenomenon. 
The symmetric, 2T solution remains stable in the 

interval A,-A,. At A,, it undergoes a symmetry 
breaking bifurcation into an asymmetric, stable 2T 
solution. As the Rayleigh number is further reduced, 

the 2T periodic solution undergoes a sequence of 
period doublings which terminates in a symmetric 
chaotic attractor. The chaotic behavior is depicted in 

terms of the time series X vs t and the corresponding 
power spectrum in Figs. 7 and 8. The XY projection 
of the trajectories is shown in Fig. 9. The time series 

(Fig. 7) consists of non-periodic bursts of motion 
either in the clockwise or counterclockwise direction 

interrupted by intervals of low velocity (X N 0). The 
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R 

FIG. 5. The average convected energy is depicted as a function of the byleigh number (R). 
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FIG. 6. XY projection of the phase portrait for (a) 2T periodic solution at R = -4.6 and (b) the chaotic 
attractor at R = -4.9. 
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FIG. 7. The velocity (A’) shown as a function of time in the chaotic regime (R = -6). 

w 

FIG. 8. The power spectrum of the chaotic signal at R = - 6. 
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FIG. 9. XY projection of the phase portrait of the chaotic attractor at R = -6. 

power spectrum depicted in Fig. 8 exhibits a few 
broad-band areas around dominating frequencies at 
o, - 0.5, 1.5, 2.5 and 3.5, which are not integer mul- 
tiples of the forcing frequency. The power spectrum 
and the attractor’s structure suggest that the chaotic 
behavior exhibits noisy or (semi) periodicity. The 

attractor (Fig. 9) appears to have the relatively simple 
structure of a plane bent into a saddle-shape. This 
view of the attractor is further enhanced when we 
examine the Poincare cross-section of the attractor 
(Fig. 10). 

We define Poincare cross-sections as R3 hyper- 
surfaces with Mod (t, T) = (m/n)T, where 0 < m < n, 

and n are integers. By using Poincare sections, we 
transform the continuous time system to a discrete 
system. Since it may be inconvenient to depict higher- 

order dimensional surfaces, we shall resort to pro- 
jections onto lower dimensional hypersurfaces. For 
example, in Fig. 10, we show an XY projection of the 
Poincare section which appears as a single S-shaped 
line. The appearance of a single curve is the result of 
insufficient resolution of the figure and it attests to the 

strong contraction of the attracting set in the direction 
normal to the curve. This contraction is a result of 
the dissipative nature of the equations which causes 
trajectories to contract volume in phase space. In actu- 
ality, the curve in Fig. 10 consists of many layers 
bounded close together. The dynamics of the attractor 
can be studied conveniently through a return map 
(Fig. 11). The return map is constructed by taking a 
set of points {X,,} at some time t and finding their 
corresponding values {X,E+ ,} at time t+ T. The map 

FIG. 10. XY projection of the Poincare cross-section of the chaotic attractor at R = -6. 
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FIG. 11. A return map describing the dynamics on the chaotic attractor (R= - -6). 

in Fig. 11 also includes a 45” (dashed) line which will 
assist us in the construction of the motion trajectories. 
The dynamics of the attractor can be studied by select- 
ing any point on the return map (X,, say), drawing a 
horizontal line to the 45” line and erecting a vertical 
line to the return map to find point X,, etc. Note that 
the return map suggests a change in the sign of X 
(the flow direction) at every iteration (within every 

period T). 
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1. 

2. 

The chaotic attractor is interrupted with a periodic 
window at A,, (Fig. 3) and is terminated at A,, by a 
saddle node bifurcation into a T periodic solution. 
The periodic solution is visible in the chaotic regime 
and it appears to bifurcate supercritically from the 
non-stable no-motion solution. This T periodic solu- 
tion undergoes a period doubling sequence which 
results in another chaotic region with periodic 
windows. Realizing that the analysis could go on 
indefinitely, we decided to terminate it at this point. 

3. 

5. CONCLUSION 8. 

We analyzed the behavior of a thermal convection 
loop subjected, on average, to heating from above. 
Although the temperature field in the loop is on aver- 
age stably stratified, we observed, contrary to what 
one might expect, that as the Rayleigh number 
decreases, a large number of complicated flow struc- 
tures, ranging from no-motion to periodic motion 
with various periodicities to chaos, occur. It is inter- 
esting to note that the motion solutions consist of 
motion pulses with intervals of almost no-motion in 
between. The results also indicate that, in spite of the 
stable stratification (on the average), net circulation 
of mass and energy is possible. The results may be of 
interest, among other things, to circulation in the 
ocean and the earth where upper surfaces are subject 
to periodic temperature fluctuations. 

9. 
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BOUCLE DE CONVECTION THERMIQUE AVEC CHAUFFAGE PAR DESSOUS 

Rbume-La dynamique d’un ecoulement monophasique induit par les forces de flottement dans une 
boucle toroidale est etudiee theoriquement sous des conditions de temperature parietale variant periodi- 
quement dans le temps. Le chauffage et le refroidissement qui sont appliques aux parois de la boucle 
sont symetriques par rapport a l’axe qui est parallele au vecteur gravite. En moyenne, la temperature de 
la moitie superieure a une valeur plus grande que celle de la moitie inferieure. Le champ de temperature 
dans la boucle est stratifit de facon stable et le nombre de Rayleigh base sur la difference des temperatures 
moyennes a une valeur negative. En depit de cela, lorsque le nombre de Rayleigh decroit l’tcoulement dans 
la boucle montre une riche variett de structures avec un transport thermique net depuis la frontiere chaude 
jusqu’a la froide. Quand le nombre de Rayleigh diminue, les structures passent depuis le repos a la 

ptriodicite, a I’ecoulement chaotique occasionnellement interrompu par des fenetres periodiques. 

NATURUMLAUFSYSTEM MIT BEHEIZUNG VON OBEN 

Zusammenfassung-Es wird die Dynamik einer einphasigen, vom Auftrieb verursachten Striimung in 
einem torusfiirmigen Kreislaufsystem unter der Bedingung von zeitabhiingigen, periodisch verinderlichen 
Wandtemperaturen untersucht. Die Heizung und Kiihlung an den Wanden des Kreislaufsystems ist sym- 
metrisch zu dessen Achse, die parallel zur Richtung der Erdbeschleunigung verlluft. Im Durchschnitt wird 
die Temperatur der oberen Halfte auf einem hiiheren Wert als in der unteren HHlfte gehalten. Das bedeutet, 
daB das Temperaturfeld im Inneren des Kreislaufs im Mittel stabil geschichtet ist und da!3 die Rayleigh- 
Zahl, die auf der mittleren Temperaturdifferenz beruht, einen negativen Wert annimmt. Entgegen dieser 
Tatsache weist die Stromung im Kreislauf bei abnehmender Rayleigh-Zahl eine grol3e Vielfalt an Stro- 
mungsformen mit einem Nettowarmetransport vom warmen zum kalten Bereich auf. Mit abnehmender 
Rayleigh-Zahl wechseln die Stromungsformen von keiner Bewegung iiber zeitlich period&he Bewegung 

zu chaotischer Striimung, die gelegentlich durch periodische Abschnitte unterbrochen ist. 

KOHTYP TEI-IJIOBOI? KOHBEKHMH I-IPM HAI-PEBE CBEPXY 

~OT~~~~eOpeT~YecKll~~AeAOyeTCKA~HaMHKaOAHO~a3HO~OCBO60AHO-KOHBeKT~BHO~OTe~eH~K~ 

TOpOHAaJlbHOM KOHType B yCJIOBLiKX HeCTWiOHapHOii IIepHOAEi'IeCKH H3MeHIlEOIJJefiCK TeMnepaTypbI 

CTeHOK.HarpB H OXJIa~AeHHeHaCTeHKaX KOHTypa IIBJIKEOTCII CHMMeTpWVHbIMU OTHOCBTe,IbHOe,-0 OCB, 

napa.menbHoii seKTopy cw~b~ TII~~CTH. B cpemeM n sepxnefi nacrn konrypa nonneprasaemn 6onee 
BbICOKall TehmepaTypa,reMB HHXCHefi,T.e.TeMnepaT~Hoe none BH~TPH KOHTypa ycTofi-iHBoCTpaTB@i- 

AHpOBaHO H YHCJIO P%IeK,OCHOBaHHOe Ha CpAHefi pa3HOCTH TeMl,epaTyp,npHHHMaeT OTp&,uaTe,IbHOe 

3naSehme. HeCMOTpK Ha 3~0~ yMeHbrueHHeh9 wicna Psnen cTpyKTypa Te-mim B KOHTY~~ npeTepnesaeT 

pa3nmHbIe H3MeHeHm c mHbIh9 npeo6nananneM nepenoca renna 0~ HarpeToii rpaminbr K xonoAaol. 

n0 Mep yMeHbIlIeHIi5l WiCJIa P3JIeK CTpyKTypbI TeYeHBK 83MeHKlOTCII OT OTCyTCTBHK ABHEeHHK K 

"CpHOAHWCKOMy ABHmeHHIO, a 3aTeM K XaOTWIeCKOMy IIOTOKy, C,IyYaiiHbIM o6paaoM "PepbIBaeMOMy 

IIepHOAH'IeCKHMLiEiHTepBaJIaMEi. 


